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Abstract. We study irreversible polymer adsorption from dilute solutions theoretically. Universal features
of the resultant non-equilibrium layers are predicted. Two broad cases are considered, distinguished by the
magnitude of the local monomer-surface sticking rate Q: chemisorption (very small Q) and physisorption
(large Q). Early stages of layer formation entail single-chain adsorption. While single-chain physisorption
times τads are typically micro- to milli-seconds, for chemisorbing chains of N units we find experimentally
accessible times τads = Q−1N3/5, ranging from seconds to hours. We establish 3 chemisorption universality
classes, determined by a critical contact exponent: zipping, accelerated zipping and homogeneous collapse.
For dilute solutions, the mechanism is accelerated zipping: zipping propagates outwards from the first
attachment, accelerated by occasional formation of large loops which nucleate further zipping. This leads
to a transient distribution ω(s) ∼ s−7/5 of loop lengths s up to a maximum size smax ≈ (Qt)5/3 after time
t. By times of order τads the entire chain is adsorbed. The outcome of the single-chain adsorption episode
is a monolayer of fully collapsed chains. Having only a few vacant sites to adsorb onto, late-arriving chains
form a diffuse outer layer. In a simple picture we find for both chemisorption and physisorption a final loop
distribution Ω(s) ∼ s−11/5 and density profile c(z) ∼ z−4/3 whose forms are the same as for equilibrium
layers. In contrast to equilibrium layers, however, the statistical properties of a given chain depend on its
adsorption time; the outer layer contains many classes of chain, each characterized by a different fraction
of adsorbed monomers f . Consistent with strong physisorption experiments, we find the f values follow a
distribution P (f) ∼ f−4/5.

PACS. 82.35.-x Polymers: properties; reactions; polymerization – 05.40.-a Fluctuation phenomena, ran-
dom processes, noise, and Brownian motion – 68.08.-p Liquid-solid interfaces

1 Introduction

Polymer layer formation is unavoidable when even weakly
attractive surfaces come into contact with a polymer so-
lution [1,2], see Figure 1. Even for extremely dilute poly-
mer solutions, polymer layers develop with densities which
may be many orders of magnitude larger than the bulk
polymer concentration [3]. This is due to the fact that by
giving up their bulk translational entropy, which costs a
free energy of only kT , chains achieve an energy advantage
proportional to the number of monomers per chain, N , for
large enough N values. The topologically complex interfa-
cial layers contain both surface-bound segments and large
loops and tails extending into the bulk (see Fig. 1). In
principle, given enough time, adsorbed polymers are able
to explore all accessible states [4–6] and the layer attains
equilibrium. Equilibrium layers have been the focus of a
large body of experimental [2,7–9], theoretical [1–3,10–20]
and numerical [21–23] work.
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In a great many cases, however, the surface sticking
energy per monomer ε exceeds kBT . Available experimen-
tal evidence suggests that desorption processes and re-
laxation kinetics within the layer are then sharply slowed
down [24–40]. For ε values of several kBT time scales be-
come so long that the layer build-up becomes essentially
an irreversible process leading to non-equilibrium struc-
ture [31,32]. One may speculate this is due to cooperative
effects mediated by mutual topological chain constraints
which drastically suppress mobilities near the surface [40].
Indeed, in the scaling theory [1] for equilibrium layers,
when ε exceeds kBT the smallest loops in the layer be-
come as small as the monomer size, a. Such small loops
are likely to greatly restrict chain motion.

For physical-adsorption processes, large sticking ener-
gies originate in hydrogen bonding, dispersion or dipolar
forces or attractions between charged groups. Most metal
and silicon-based surfaces are normally oxidized and many
polymer species form strong hydrogen bonds with the sur-
face oxygen or silanol groups. Biopolymers such as pro-
teins and DNA attach tenaciously to many surfaces due



214 The European Physical Journal E

(b)

(a)

Fig. 1. The situation studied in this paper: polymer chains
adsorbing onto a surface from a dilute polymer solution. We
consider situations where monomer-surface bonds develop irre-
versibly, due either to chemical bonding or strong physical in-
teractions. (a) Early stages of layer formation. The surface is al-
most empty and the first chains to arrive adsorb on the surface
without interference from others. (b) At longer times a polymer
layer of strongly interacting chains develops and chain densities
on the surface become much higher than those in the bulk.

to their large number of charged and polar groups [41,42].
Since hydrogen bonds, for instance, normally have ener-
gies of 4kBT and greater [43], it is apparent that strong
physical bonds are very common.

The extreme example of irreversibility arises in chemi-
sorption [44–48] where covalent surface-polymer bonds de-
velop irreversibly (Fig. 1). In various technologies poly-
mers are attached by chemical reactions to solid surfaces
either from solution as in colloid stabilization by chemi-
cally grafting polymers onto particle surfaces [49], or from
a polymer melt as occurs in the reinforcement of polymer-
polymer [50–52] or polymer-solid [50,53–55] interfaces. In
general, whether physical or chemical bonding is involved,
many applications prefer the strongest and most enduring
interfaces possible and irreversible effects are probably the
rule rather than the exception.

This paper considers dilute solutions. Irreversible ad-
sorption from melts and semidilute solutions, previously
studied both experimentally [56–63] and theoretically
[64–66], involves rather different processes. Our aim is to
understand the structure and formation kinetics of layers

which are formed under these irreversible circumstances
where the usual statistical mechanical approach is inappli-
cable to the non-equilibrium structures which form. A se-
ries of experiments by Granick and coworkers [27–35] have
examined these issues. These workers found that when
ε reached values of only a few kT , polymer relaxation
times became large and equilibrium layers were not at-
tained. This was most clearly apparent in experiments fol-
lowing polymethylmethacrylate (PMMA) adsorption onto
oxidized silicon (ε ≈ 4kBT ) via hydrogen bonding from
a dilute CCl4 solution [30–33]. Measuring both the total
adsorbed mass, Γ , and the surface-bound part, Γbound, as
a function of time by infrared absorption spectra, it was
found that early-arriving chains had much higher frac-
tions of bound monomers, f , than late arrivers, and these
f values were frozen in throughout the experiment’s du-
ration of several hours. Essentially, monomers remained
irreversibly fixed to the site they originally landed on, or
at least close to this site. Measuring the distribution of
f values among chains they found a bimodal distribution
shown in Figure 2(b) with two peaks at small and large
f , respectively. This is strikingly different to equilibrium
layers where all chains within the layer are statistically
identical and are characterized by the same time-averaged
value, f = Γ∞

bound/Γ
∞, where ∞ denotes asymptotic val-

ues (t→ ∞).

A number of analytical and numerical efforts [32, 46,
47, 67–71] have addressed irreversible polymer adsorp-
tion from solution. However, the understanding of these
phenomena remains very far from the quantitative level
which has been achieved for equilibrium layers. In this pa-
per we develop a theory which amongst other objectives
aims to understand the experimental findings of references
[30–33]. We emphasize adsorption from a dilute polymer
solution under good-solvent conditions and consider sys-
tems where monomer-surface bonds are strong enough
that they are effectively irreversible within the experimen-
tal timescales. Certain results are generalized to theta-
solvent solutions. We calculate the relationship Γbound(Γ ),
how each of Γbound and Γ depends on time, as well as the
final layer’s distribution of chain contact fractions, P (f).
We will compare our predicted final layer structure to the
well-established theoretical results for equilibrium layers
which predict a density profile c(z) ∼ z−4/3, and a self-
similar loop distribution, Ω(s) ∼ s−11/5. Similar to the
picture that was developed by Granick and coworkers,
we find that the final layer consists of two populations:
early-arriving chains lie flat on the surface while late ar-
rivers can only adsorb with an ever-decreasing fraction
of their monomers onto the surface leading to a diffuse
weakly attached outer layer. We find a universal distribu-
tion of f values, P (f) ∼ f−4/5 for small f which agrees
rather closely with the experiments of references [31, 32].
Interestingly, we find layer loop distributions and den-
sity profiles obeying the same scaling laws as those of
equilibrium layers. Chain configurations are very different,
however, leading to radically different physical properties
of the layer.
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Fig. 2. (a) Theoretically predicted dependence of surface-
bound mass, Γbound, on total adsorbed mass per unit area, Γ .
For irreversible physisorption, an initial linear regime crosses
over to sharp saturation ∆Γbound ∼ (∆Γ )6 as asymptotic cov-
erages are approached. A similar curve has been measured ex-
perimentally in reference [31]. For chemisorption the relation is
the same, but with an additional initial regime Γbound ∼ Γ 8/3.
(b) Probability distribution of fraction of bound monomers f
per chain. Grey bars reproduce experimental data from refer-
ence [31]. Empty bars are the theoretically predicted P (f) ∼
f−4/5 for fmin < f < ω, where values for fmin = 0.09 and
ω = 0.47 were derived from the measurements in reference [31].
The delta-function at f = ω is the contribution from early-
arriving chains and is expected to be broadened in reality.

Our picture of irreversible polymer adsorption is in
some respects qualitatively similar to the theoretical one
of the workers of reference [32] who simulated their exper-
iments in a random sequential adsorption [72] framework.
They visualized chains as “deformable droplets”: at the
early stages when the coils arrive onto a bare surface, each
droplet adsorbs a certain maximum cross-sectional area.
As available surface area for adsorption become scarce, in
order for late-arriving chains to adsorb, it was assumed
droplets deform by reducing their cross-sectional areas
parallel to the surface to fitting into the empty space.
In so doing, they become more extended into the bulk.
Using this model they generated a P (f) similar to the ex-
perimental one of Figure 2(b). The picture developed here
differs in this respect: late-arriving chains freely overhang
early flat-lying chains and rather than fitting into a single
available connected surface area, they attach at discon-
nected empty surface sites.
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Fig. 3. The two classes studied in this paper: physisorption
and chemisorption. Simplified view of monomer free energy
as a function of distance between monomer and surface. In
physisorption there is no activation barrier and monomer-
surface association is immediate upon contact. When sticking
energy ε exceeds a few kT , experiment indicates that ef-
fective desorption rates become very small, presumably
due to complex many-chain effects. Chemisorption typically
involves a large activation barrier, u � kT , which needs
many monomer-surface collisions to traverse. The adsorption
strength is also large, ε � kT . Some systems are in practice
mixtures of chemi and physisorption, a complexity not dealt
with in the present work.

The process of irreversible polymer layer formation
entails progressive freezing-in of constraints due to ir-
reversible monomer-surface bonding. These constraints
gradually reduce the volume of configurational phase
space available. Thus, ergodicity is inapplicable and in
lieu of the algorithms of equilibrium statistical mechan-
ics, one must follow the kinetics of chain adsorption
and layer build-up. It is important to distinguish care-
fully between two broad classes of adsorption kinetics,
physisorption and chemisorption, which are characterized
by very different values of the local reaction rate Q. We
define this as the conditional monomer-surface reaction
rate, given an unattached monomer contacts the surface
(see Fig. 3). In physisorption, monomer attachment is
essentially diffusion-limited, Q ≈ 1/ta, where ta is the
monomer relaxation time. Chemisorption, where adsorbed
monomers form very strong chemical bonds with the sur-
face [44–48, 73] is much slower [52, 74, 75] with Q val-
ues 8 or more orders of magnitude smaller than those of
physisorption. The origin of this difference is that chemical
bond formation usually involves a large activation barrier
(Fig. 3).
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Our theoretical approach is to make the simple as-
sumption of total irreversibility, motivated by the exper-
iment discussed above: once a monomer bonds with the
surface, our model is that this bond never breaks. The pro-
cesses of chemisorption and physisorption will be analyzed
separately. Though we find both lead to similar final layer
structures, the kinetics are very different. In physisorption,
a single chain adsorbs onto a bare surface in a time of
order the coil relaxation time or less, typically microsec-
onds, whereas single-chain chemisorption may last min-
utes or even hours and is thus observable experimentally.
We begin with a study of chemisorption in Sections 2, 3,
and 4. Specifically, in Section 2 we show that quite gener-
ally there are three possible modes of single-chain adsorp-
tion, depending on the value of a certain critical exponent
θ. Single-chain chemisorption from good and theta sol-
vents is then studied in detail in Section 3. In Section 4
we consider the later stages of the kinetics when chains
overlap and dense layers are formed (Fig. 1). The case
of irreversible physisorption is treated in Section 5. We
compare our results to experiment and conclude with a
discussion in Section 6. An announcement of our results
has appeared in reference [76].

2 Chemisorption, general discussion: three
modes of adsorption

Our interest is an initially bare surface confronting a di-
lute solution of functionalized chains. During the earlier
stages of surface layer formation, the coverage is small and
individual chains do not see each other. In this section, we
consider in detail how a single chain chemisorbs onto an in-
terface, remembering that chemisorption is characterized
by very small values of the local monomer-surface reac-
tion rate Q. The chain will make an initial attachment and
then develop a certain loop profile as successive monomers
gradually attach, eventually leading to complete chain ad-
sorption in a certain time τads (see Fig. 4), whose depen-
dence on chain length is an important characteristic. Since
the early polymer layer consists of chains dilute on the
surface as in Figure 1(a), the initial layer structure is a
superposition of these single-chain loop profiles.

In this section we consider chemisorption in its full
generality. We show that there are three distinct classes
of behavior, each with different adsorption modes, loop
profiles and adsorption times τads. Which class a given
experimental system belongs to depends on the bulk con-
centration regime and other factors. The classes are de-
fined by the value of a critical exponent characterizing
polymer statistics near surfaces.

We will assume that all monomers are identical and
chemically active, and that the surface has a free ener-
getic preference for the solvent over the polymer species.
This means that in terms of physical interactions the poly-
mers see a hard, repulsive wall. We choose units where the
monomer size a is unity.

Consider the chain in Figure 4(b) whose first monomer
has just reacted with the surface. Which of the chain’s re-
maining monomers will react next? What is the sequence

k (s)

1< θ < 2

θ > 2

 θ < 1

s

Q

k (s)=Q/sθ
s

N

(a)

s

N−s
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Fig. 4. Schematic of single-chain chemisorption. (a) A chain
makes its first attachment with the surface and starts its ad-
sorption process. The rate of first monomer attachment is pro-
portional to Q, namely the reaction rate given the monomer
touches the surface. Subsequent monomer adsorption is de-
termined by the form of the reaction rate k(s) for the s-th
monomer away from the first attachment. For s � N , where
N is the length of the tail, k ≈ Q/sθ where the exponent
θ reflects equilibrium polymer statistics near interfaces, given
the constraints imposed by earlier reactions. (b) Depending on
θ, three modes of adsorption are possible. i) Zipping, θ > 2.
Monomers adsorb sequentially forming a long train. ii) Accel-
erated zipping, 1 < θ < 2. As i) but zipping is accelerated
by nucleation of new zipping centers due to formation of large
loops. iii) Uniform collapse (θ < 1). Monomers distant from ad-
sorbed ones come down first leading to formation of large loops
whose size is uniformly decreasing with time. Chemisorption
from dilute solution with good solvent is accelerated zipping
(θ = 8/5).

of chemisorption events? This depends on the form of the
reaction rate k(s) at which a reactive group s monomer
units along the backbone away from the bound monomer
reacts with the surface, as shown in Figure 4(a). Now
the important feature of chemisorption is that due to the
smallness of Q in order for any chemical bond to form
a time much larger than the attached chain’s relaxation
time is needed. Thus, quite generally the reaction rate for
a given monomer at any moment is proportional to the
equilibrium contact probability of finding this monomer
on the surface given the current constraints due to all
chemical bonds formed at earlier times. In this particular
situation, this is

p(s|N) =
Z(s,N)
Z(N)

, (1)

where Z(N) is the partition function of the chain with one
monomer bound (middle of Fig. 4(a)) and Z(s,N) is the
partition function of the chain which has the additional
constraint that the s-th monomer is also bound (last of
Fig. 4(a)). Physically, one expects that for small enough
s, this is independent of N , i.e. p(s|N) ≈ s−θ, where the
value of the exponent θ reflects the equilibrium polymer



B. O’Shaughnessy and D. Vavylonis: Irreversible adsorption from dilute polymer solutions 217

statistics, given the constraints. This then leads to the
following expression for the reaction rate:

k(s) ≈ Q

sθ
(s� N) . (2)

The total reaction rate for the next adsorption event is
a sum over all the N − 1 monomers which may adsorb
next. These belong to the two tails in Figure 4(b) which
are of order N in length. The net reaction rate is thus
approximately

Rtotal ≈
∫ N

1

k(s)ds, (3)

which, depending on the value of θ, is dominated by either
small or large s.

This argument is then repeated for the reactions of
the second, third and subsequent monomers, in all cases
described by a rate with the same small-s behavior as in
equation (2). The only difference is that tails are replaced
by loops. Thus, the entire kinetic sequence is character-
ized by the single exponent θ. The nature of the kinetics
depends on the value of θ as follows.

i) θ > 2. Suppose the equilibrium statistics (Eq. (1))
are such that k(s) decays faster than 1/s2. Then
Rtotal ≈ k(1) and typically a monomer near the first
attachment is most likely to attach next. The third
monomer to attach, repeating the same argument, will
be near the first two, and so on. In this case, therefore,
the chain would zip onto the surface starting at the
first attachment point, as shown in the top of Fig-
ure 4(b). Since each new attachment occurs at the
same rate each time, the full zipping time would then
be τads ≈ N/k(1) ≈ Q−1N .

ii) θ < 1. In this case Rtotal is dominated by s of order N
reflecting the fact that even though a monomer with
small s is, on average, more frequently near the sur-
face than a distant one, there are many more distant
ones and their number is the dominating factor. Thus,
a distant monomer of order N units away from the
first graft attaches next, leading to the formation of a
loop of size of order N . Repeating the argument for the
subsequent reactions leads to a process of uniform col-
lapse of the chain, where roughly centrally positioned
monomers of loops react with the surface at each step,
as shown in the bottom case of Figure 4(b). In this
case, the average lifetime of a loop with s monomers
is τloop(s) ≈ 1/

∫ s

1
ds′k(s′) ≈ Q−1s1−θ. Thus, smaller

loops take longer time to collapse and the rate limiting
step for full adsorption is the collapse of the smallest
loops: τads ≈ τloop(1) ≈ Q−1.

iii) 1 < θ < 2. This is intermediate between zipping and
collapse. Though Rtotal is dominated by small s, sug-
gesting zipping, there is in fact enough time before
pure zipping completes for large loops to form. To see
this, return to the 1-graft situation on the extreme left
of Figure 4(b). The time for a loop of order N (for the
argument’s sake, bigger than N/2) to form from one

of the two tails extending from the grafted monomer
is roughly

τN ≈
(∫ N

N/2

ds k(s)

)−1

≈ Q−1Nθ−1 . (4)

This is much smaller than τads ∼ N which pure zipping
would give, and thus before pure zipping is complete,
large loops must have formed. We call this case ac-
celerated zipping, since large loop formation effectively
short-circuits the pure-zipping process by nucleating
new sources of zipping as shown in the middle case of
Figure 4(b). Now equation (4) implies (unlike θ < 1)
larger loops take longer to form. Thus by τN loops of
all sizes have come down, i.e. the chain has adsorbed
and we conclude τads ≈ τN .

In summary, depending on the value of θ the
chemisorption time has three possible forms:

Qτads ≈
 const (θ < 1),
Nθ−1 (1 < θ < 2),
N (θ > 2).

(5)

In the next section we calculate the value of θ under
good-solvent conditions and find that it belongs to the
accelerated-zipping case. We then study the correspond-
ing case in detail.

3 Single-chain chemisorption in a good
solvent: accelerated zipping

In this section we consider the kinetics of single-chain
chemisorption, describing polymer layers during the early
stages of the chemisorption process, Figure 1(a). Expres-
sions are derived for the number of bound monomers,
γbound(τ), and the single-chain loop distribution profile,
ωτ (s), where τ measures time after first monomer attach-
ment onto the surface. In order to perform these calcu-
lations, in this section we first evaluate the reaction ex-
ponent θ of equations (2) and (5) and find it belongs to
the accelerated-zipping class. Subsequently, we solve the
accelerated-zipping kinetics, first using simple scaling ar-
guments and then a more detailed solution of the rate
equations.

3.1 The reaction exponent θ

To our knowledge, θ in good solvents has not been cal-
culated before. We show here that it can be expressed
in terms of other known critical exponents characterizing
polymer networks [77,78]. The simplest way to derive θ is
to consider a loop of N monomers bound to the surface by
its two ends as in Figure 5(a). Then the reaction rate of
its s-th monomer resulting in the formation of two loops
of lengths s and N − s, as shown in Figure 5(b), is

k(s|N) = Q
Zloop(s,N − s)
Zloop(N)

, (6)
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s

N N−s(a) (b)

Fig. 5. A polymer loop anchored to the surface by its two
ends. The reaction rate of its s-th monomer with the surface,
leading to two loops of length s and N − s, is proportional to
the ratio of the partition functions of the loop before and after
the reaction.

where Zloop(N) and Zloop(s,N−s) are the partition func-
tions of the loops of Figure 5(a) and (b), respectively. Now
although Zloop(N) is known, Zloop(s,N) is only known for
s of order N . From reference [77]:

Zloop(N) ≈ µNNγa−1 , Zloop(N/2, N/2) ≈ µNNγc−1 ,
(7)

where µ is a constant of order unity and the values of γa, γc

have been calculated analytically and numerically [77,78].
Now, demanding that Zloop(s,N − s) follows a power law
for small s and that it reduces to equations (7) in the
s→ 1 and s→ N/2 limits one has

Zloop(s,N − s) ≈ µNNγc−1ζ
( s
N

)
. (8)

Here the scaling function ζ must obey:

ζ(x) ≈
x

−θ (x→ 0),
1 (x = 1/2),
(1 − x)−θ (x→ 1),

(9)

where the x → 0 and x → 1 behaviors are identical by
symmetry and

θ = 1 + ν ≈ 8/5 (good solvent), (10)

which follows after using the identity [77] γa − γc = ν + 1.
Here ν ≈ 3/5 is the Flory exponent [79]. From equa-
tions (6), (7), and (8) one thus has

k(s|N) ≈ Q

Nθ
ζ

( s
N

)
, (11)

which for s� N , reduces to equation (2), k ∼ s−θ. Thus,
single-chain chemisorption in a good solvent is character-
ized by θ ≈ 8/5; since 1 < θ < 2, the adsorption mode is
accelerated zipping.

Equation (11) was derived for the particular case of
a loop as in Figure 5. But even if the reacting monomer
is part of a tail as in Figure 4(a), by a straightforward
generalization of the reasoning of this section using the
exponents calculated in reference [77], one can show that
the reaction rate has the same form for s � N . One can
show the same is true if the ends of the loop in Figure 5
are connected to other loops.

The above results for θ directly generalize to theta-
solvent solutions. In this case polymer statistics are effec-
tively ideal [79] and ν → 1/2 in all of the above, i.e.

θ = 3/2 (theta solvent) , (12)

which also corresponds to accelerated zipping. In fact, for
this case the exponent can be obtained more simply as
follows: the probability that the s-th monomer, measured
from a given surface attachment, is in contact with a hard
wall is proportional to the return probability P of a ran-
dom walk which starts one step away from an absorbing
surface after s steps, i.e. k ∼ P ∼ s−3/2.

Finally, we remark that the partition functions of equa-
tion (7) correspond to loops such as those of Figure 5
whose end locations on the surface are annealed [77]. How-
ever, for chemisorption onto solid surfaces the ends are
either completely fixed or may diffuse very slowly on the
surface. (Note that chemisorption onto liquid interfaces
are cases where the end locations are truly annealed.)
Nonetheless, all our results for s � N and the scaling
structure of equation (11) must remain the same even in
this case, since in the s � N limit, k(s|N) is indepen-
dent of the location of the other end. Our general con-
clusions are thus expected to be robust, provided the two
ends are not so far apart that there are strong lateral loop
stretching effects. In the following we self-consistently as-
sume that as the adsorption process proceeds there is no
tendency for generated loops to be in such stretched con-
figurations.

3.2 Accelerated zipping: scaling analysis

Let us consider now the kinetics of adsorption starting
from a polymer chain as in Figure 4(a) which has just
made its first attachment with the surface with an interior
monomer. This is in fact typical: we show in Appendix A
that chains are much more likely (by a factor N0.48) to
make their first surface contact with an interior monomer
because there are many more (of order N) such monomers
as compared to chain ends.

Now the chain starts to chemisorb at τ = 0. From
the previous section we have seen that in the accelerated-
zipping mode the chain adsorption time τads is equal to τN ,
the timescale associated with loops of size N . What will
the chain’s loop profile be for times τ smaller than τN? Ini-
tially, since the reaction rate is dominated by small s, the
chain will start to zip and sequences of bound monomers
(“trains”) will grow outwards from the first attachment
point. As time proceeds though, large loops start to come
down due to adsorption of monomers distant to the al-
ready bound ones. These loops have a certain distribution
of loop sizes ωτ (s) and their effect is to accelerate the
zipping process since they nucleate further sources of zip-
ping and train formation. The maximum size of such loops
which had enough time to form by time τ , i.e. for which∫ N

smax
τ

ds′k(s′) ≈ 1/τ , is

smax
τ ≈ (Qτ)1/ν , (13)
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Fig. 6. Snapshot of loop profile of a chemisorbing chain dur-
ing its accelerated zipping down onto a surface. At an earlier
time the chain adsorbed with an interior monomer from which
zipping started to propagate outwards accompanied by occa-
sional formation of large loops which nucleated further zipping
sources as shown. The distribution of loop sizes follows a uni-
versal power law and as larger loops form with increasing time,
loop sizes are larger near the outermost tails. The tails act as a
continuous loop source, thus sustaining the loop distribution.
Eventually, after τads ≈ Q−1Nν , the largest loop becomes of
order the tail size, N , the tails are completely consumed and
the structure collapses onto a completely flat configuration.

which increases with time. The maximum loop size thus
becomes of order N at τN .

Overall, we expect the chain to consist of three parts,
shown in Figure 6: i) Two large tails, each of length of
order N . These are the two tails of the polymer chain
which was initially bound by one of its interior monomers
as in Figure 4(a). For t� τN the tails had neither enough
time to decay into large loops, nor to completely zip.
ii) Loops with a loop distribution ωτ (s). iii) Trains of
bound monomers whose number we define to be γbound(τ).

Now γbound(τ) is easily found by making the ansatz
that it follows a power law in time. In addition, for short
times γbound is independent of N ; one can imagine send-
ing the chain size to infinity, which would not affect the
accelerated zipping propagating outwards from the initial
graft point. This dictates

γbound(τ) ≈ N
(
τ

τN

)1/ν

(τ � τN ) , (14)

since by τN most of the chain has adsorbed, i.e. we must
have γbound(τN ) ≈ N .

We now evaluate ωτ (s) by making the ansatz that it
also has power law behavior:

ωτ (s) ≈ 1
smax

τ

(
smax

τ

s

)δ

(1 � s� smax
τ ), (15)

with δ > 1. Since by τ there has been enough time for
the formation of order one loop of length smax

τ , the nor-
malization has been chosen such that there is one loop
of order smax

τ in size. Now the total number of loops is
thus L(τ) =

∫ N

1
ds ωτ (s) ≈ (smax

τ )δ−1. These loops pro-
vide L(τ) new nucleation points for further zipping. The

reaction rate at each such point is dominated by small s
(since θ > 1) and is thus of order k(1), so

dγbound
dτ

≈ k(1)L(τ) ∼ τ (δ−1)/ν (τ � τN ) . (16)

Now demanding that (16) reproduces equation (14) the
value of δ is determined:

δ = 2 − ν . (17)

Notice that the above results are self-consistent: the num-
ber of loops L(τ) is much smaller than γbound(τ), and
essentially all reacted monomers do belong to trains as
assumed in equation (14).

Let us summarize this section’s results, setting ν = 3/5
which is the value relevant to our main interest of dilute
solutions with good solvent. From equations (13), (14) and
(15) we have

γbound(τ) ≈ (Qτ)5/3 , ωτ (s) ≈ (Qτ)2/3s−7/5 (18)

valid for τ < τN and s < smax
τ ≈ (Qτ)5/3.

3.3 Accelerated zipping: solution of rate equations

In this section we analyze the accelerated-zipping phe-
nomenon in a more rigorous way by solving the loop evo-
lution dynamics. We will recover all of the scaling results
of Section 3.2. The time evolution of the chain’s loop dis-
tribution is given by [46]

dωτ (s)
dτ

= 2
∫ N

s

ds′ ωτ (s′) k(s|s′) −
∫ s

0

ds′ ωτ (s) k(s′|s) ,
(19)

where the first term on the right-hand side (rhs) describes
the rate of formation of loops of length s by bigger ones,
while the second term on the rhs is the rate of decay of
a loop of length s into smaller loops [80] and k is given
by equation (11). The initial condition for equation (19)
is ω0(s) = δ(s − N), i.e. there is only one initial loop
of length N (in the following, for simplicity, we do not
distinguish between tails and loops). A basic assumption
in equation (19) is that k(s|N) retains the form of
equation (11) throughout the adsorption process. That is,
we assume topological and many-loop excluded-volume
effects (beyond those contained in Eq. (6)) are not strong
enough to alter the essential form of k(s|N). It is easy to
show by integrating equation (19) over all s (see calcula-
tion in App. B) that the kinetics conserve the total number
of monomers. Formally, ωτ (s) in equation (19) is an en-
semble average over many chains. However, the number of
loops formed by a single chain becomes much larger than
unity as time increases and thus equation (19) accurately
describes the loop distribution of a single chain as well.

Although both integrals in equation (19) diverge at
s′ = s and s′ = 0, these divergences cancel with one an-
other. In fact defining Dτ (s) to be the number of loops
larger than s,

Dτ (s) ≡
∫ ∞

s

ds′ ωτ (s′) , (20)
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we obtain the following equivalent rate equation which has
well-defined integrals:

dDτ (s)
dτ

=
∫ N

s

ds′ λ(s|s′)ωτ (s′) , (21)

where

λ(s|s′) ≡ Q

s′ν

∫ 1−s/s′

s/s′
dx ζ(x)

=
{−AQ/(s′ − s)ν (s′ → s) ,
BQ/sν (s′ 
 s) , (22)

with A,B positive constants of order unity. Equation (21)
is derived by integration of equation (19). Its validity is
easy to check by differentiation with respect to s and using
ζ(s/s′) = ζ(1−s/s′); one then recovers equation (19). No-
tice that the function λ(s|s′), which describes how much
each loop s′ contributes to changes in Dτ (s), is negative
for s′ < 2s since a loop shorter than 2s always creates at
least one loop smaller than s. Also λ(s|s′) is positive for
s′ > 2s, since at least one loop bigger than s is created by
a loop longer than 2s.

We saw in Section 3.2 that the two large tails forming
after the first attachment have of order N monomers until
essentially the end of the chemisorption process. In order
to describe the tail kinetics, let us consider s very close to
N in equation (21):

dDτ (s)
dτ

≈ −
∫ N

s

ds′
AQ

(s′ − s)ν
ωτ (s′) (s→ N) . (23)

Self-consistently, one can show that error terms arising
from approximating λ by −AQ/(s′ − s)ν in equation (23)
are higher order. Equation (23) is solved in Appendix C,
with solution

ωτ (s) =
1
smax

τ

(
smax

τ

N − s
)1+ν

h

(
smax

τ

N − s
)

(N − s� N) ,

where h(x) →
{

0 (x
 1) ,
const (x� 1) . (24)

The cutoff function h(x) decays to zero exponentially
rapidly as x → ∞. Equation (24) (see Fig. 7) describes
the length of the two initial tails, which is continuously
decreasing. After time τ , the length has decreased by
smax

τ . This decrease is the maximum loop size that any
tail could have created by time τ . Due to fluctuations,
the initial δ-function peak broadens as it moves towards
s = 0. Thus, ωτ (s) in equation (24) is the probability
distribution of the tail length. One sees that by time τN
the length of the tail (the largest non-adsorbed chain
segment) shrinks to zero, thus marking the end of the
single-chain adsorption process.

Consider now loops (1 � s � N) generated by oc-
casional grafting of distant monomers. For short enough
times the only sources of loop formation are the tails which
dominate the integral on the rhs of equation (21) at s′ of

s
N

τ = 0

τ >0

maxs

N−smax

ω

Fig. 7. Sketch of the size probability distribution ωτ (s) for
the large tail (s → N , Fig. 6) for a polymer chemisorbing
from a good solvent, see equation (24). The initial (τ = 0) tail
length is a δ-function peaked at N and decreases with time
τ on average by smax

τ . The broad distribution at τ represents
fluctuations in tail length among a population of many chains.
The normalization of the distribution remains of order unity
for τ � τN .

order N . Assuming for the moment that this continues to
be true for all times, one has from equation (21)

dDτ (s)
dτ

≈ Q

sν
(smax

τ � s� N) , (25)

which after integration gives

ωτ (s) ≈ 1
smax

τ

(
smax

τ

s

)1+ν

(smax
τ � s� N) . (26)

Thus, the first loops which form have the same loop dis-
tribution profile as the small s behavior of k(s|N). How-
ever, the validity of equation (26) is limited to s > smax

τ .
This can be seen by substituting back equation (26) into
equation (21), revealing that the assumption that only
tails contribute to the rhs of equation (21) is incorrect for
s � smax

τ . This limits the validity of equation (26) to those
loop sizes too great to have been formed by tail collapse
events by the time τ . This is reflected by the fact that the
integral of equation (26) in its region of validity is of order
unity and dominated by s of order smax

τ .
Now for s < smax

τ , the main body of the loop distri-
bution, we seek a quasi-static solution, dDτ/dτ ≈ 0, or
equivalently from equation (21),∫ N

s

ds′ λ(s|s′)ωτ (s′) ≈ 0 (1 � s� smax
τ ) , (27)

representing the expectation that such loops reach a
self-maintained universal distribution. We show in Ap-
pendix D that equation (27) has a power law solution:

ωτ (s) ≈ 1
smax

τ

(
smax

τ

s

)2−ν

(1 � s� smax
τ ) . (28)

The normalization of equation (28) was fixed by demand-
ing continuity with equation (26) at smax

τ . Combining
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Fig. 8. Log-Log plot of single-chain loop distribution ωτ (s)
for chemisorption from dilute solutions at two different times,
τ1 < τ2. The distribution consists of an inner and an outer
region with ω ∼ s−7/5 and ω ∼ s−8/5, respectively, for good
solvents (ν = 3/5). Both the normalization, which is equal
to the total number of loops, and the size of the inner region
increase with time. The outer region extends up to s of order
N − smax. For larger s, the distribution is shown in Figure 7
describing the size of the large tail.

equation (28) and equation (26) we obtain the overall loop
distribution shown in Figure 8.

Now the remaining part of the loop profile is the partic-
ular contribution due to trains. That is, we must still cal-
culate the total number of adsorbed chain units γbound(τ).
One might think this is just ω(1), the number of minimal
length loops. This is wrong because there is in fact a sink
for loops of length 1, i.e. a current out of the ω(s) distri-
bution into the total mass of trains, γbound(τ). The latter
obeys the dynamics of equation (19) but with the decay
term deleted since bound monomers cannot decay into
smaller ones:

dγbound
dτ

≈ 2
∫ ∞

1

ds′ ωτ (s′) k(s|s′) ≈ Q−1 L(τ) . (29)

Here, unlike equation (19), we used an explicit cutoff at
s = 1. In the last expression of equation (29) we used the
definition of the total number of loops, L(τ), and took into
account that the integral is dominated by its lower limit.
Thus equation (29) reduces to equation (16) leading to the
solution of equation (14).

In summary, using ν = 3/5, our results for single-chain
chemisorption are

γbound(τ) ≈
{

(Qτ)5/3 (τ < τN ) ,
N (τ > τN ) ,

ωτ (s)smax
τ ≈


(smax

τ /s)7/5 (1<s<smax
τ ) ,

(smax
τ /s)8/5 (smax

τ <s<N) ,
[smax

τ /(N−s)]8/5 h(smax
τ /(N−s)) (s→N) ,

(30)

where

τN ≈ Q−1N3/5 , smax
τ ≈ (Qτ)5/3 , (31)

and the expression for ωτ is for τ < τN . A schematic
of the loop distribution is shown in Figures 6, 7, and 8.
Apart from extra details, these results are identical to the
ones we obtained in Section 3.2, equation (18), using scal-
ing arguments. Analogous results to equation (30) can be
obtained for theta solvents replacing ν → 1/2 in all ex-
pressions of this section.

4 Chemisorption: kinetics of polymer layer
formation

In this section we consider the full chemisorption process
where many chains simultaneously attach to the surface
as in Figure 1. Initially, this is a simple superposition of
single-chain adsorption processes discussed in Section 3.
As chains build up and overlap, this becomes a many-chain
phenomenon. We will determine the kinetics of total and
surface-bound mass per unit area, Γ (t), and Γbound(t), the
relationship Γbound(Γ ), the monomer density profile c(z),
and the internal structure of the layer characterized by the
loop distribution per site, Ω(s). Finally, we determine the
distribution of fraction of adsorbed monomers per chain,
P (f). We explicitly set ν = 3/5 and it will be convenient to
reinstate explicit reference to the monomer size a, hitherto
set to unity.

4.1 Monolayer forms at early stages

In the early stages of adsorption, surface-attached chains
are dilute on the surface and each one performs its ac-
celerated zipping-down in a time τN . Thus, the layer is
a superposition of such chains which arrived on the sur-
face at different times, the structure of each being given
by equation (30). Now the rate of chain arrival onto the
surface is a2dΓ/dt = QNφsurf , where Γ is monomers per
unit area and φsurf is the equilibrium monomer density at
the surface:

φsurf = φbulk
Zsurf(N)
Zbulk(N)

=
φbulk
N

. (32)

Here Zsurf , Zbulk are the single-chain partition functions
given a monomer on the surface or in the bulk, respec-
tively. Their ratio has been shown to be 1/N in refer-
ence [77]. Solving for the kinetics one thus obtains

Γ (t)a2 = φbulkQt , t < tchemsat ≡ 1/(Qφbulk) , (33)

where tchemsat is the timescale at which Γ ≈ 1/a2, i.e. when
surface density is of order one monomer per “site” of
area a2. Clearly, as tchemsat is approached, the kinetics of
equation (33) should be drastically modified to take into
account the depletion of available landing sites for new
chains.

Notice that Γ (τN )/N ≈ (φbulk/φ∗)/R2
F , where φ∗ =

N−4/5 is the chain overlap threshold concentration [79].
Thus for dilute solutions, φbulk < φ∗, attached chains are
dilute on the surface at time τN , the necessary time for
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a chain to fully adsorb. At any moment, therefore, those
chains actually in the process of chemisorption are dilute
on the surface and so do not interfere with one anothers’
adsorption process. Chains adsorb independently. (Note
that for higher concentrations, i.e. for φbulk in the semidi-
lute regime, chain interference effects would be important
and the resulting layers different.)

Although a given adsorbing chain does not see simul-
taneously adsorbing chains, in the later stages of layer
formation it will be affected by those which have pre-
viously adsorbed, because these diminish the available
empty surface sites. This effect becomes strong after time
tchemsat . Some interference of this type will commence at an
earlier stage, when flattened down adsorbed chains first
start to overlap on the surface. This happens at cover-
age Γ = N/R2

F ≈ N−1/5a2, which occurs after time
toverlap ≈ tchemsat N

−1/5. This is initially a very small ef-
fect, since at time toverlap the fraction of unavailable sites
is small for large N , of order N−1/5, so the essential fea-
tures of the adsorption kinetics will remain unmodified.
This becomes an order unity effect only at tchemsat . Between
the two times, there is a continuously increasing interfer-
ence. However, for practical values of N this is such a weak
power that the timescales toverlap and tchemsat will be diffi-
cult to distinguish. (In fact for theta solvents, ν → 1/2,
the two timescales become the same.)

Now the bound component of the attached chains of
equation (33) is a sum over the bound mass of each
chain which depends on the time it arrived on the sur-
face: Γbound(t) =

∫ t

0
dt′Γ (t′)γbound(t− t′)/N . Using equa-

tions (33) and (30), one thus has

Γbound(t)a2 ≈{
φbulkQN

3/5(t/τN )8/3 (t < τN ) ,
φbulkQt (τN < t < tchemsat ) .

(34)

The short-time kinetics of equations (33) and (34) are
schematically shown in Figure 11 below. One sees two
regimes in the short-time behavior of Γbound which are
also reflected in two regimes of Γbound(Γ ). From equa-
tions (33) and (34) one has

Γbound =
{
Γ (τN )[Γ/Γ (τN )]8/3, Γ < Γ (τN ) ,
ωΓ, Γ (τN ) < Γ < a−2 .

(35)
This early portion of the Γbound(Γ ) curve is illustrated in
Figure 2(a). In equation (35) we explicitly introduced the
proportionality prefactor ω. This is a small-scale species-
dependent constant representing the fact that even for iso-
lated chains, steric constraints at the monomer level pre-
vent every monomer from bounding. Thus, ω is the frac-
tion of monomers which are allowed by such constraints
to bound.

In summary, during the early stages of chemisorption,
chains flatten out on the surface uninhibited by the pres-
ence of others. For very short times, t < τN , none of the at-
tached chains has completed its adsorption and the layer’s
loop distribution is a superposition of single-chain loop
structures given by equation (30), summed over different

arrival times t − τ . For times longer than τN , essentially
all attached chains have fully adsorbed and a monolayer of
flattened chains starts to develop, which at times of order
tchemsat has almost covered the surface.

Up to tchemsat , the fraction f of bound monomers is
approximately the same for all chains and equal to ω.
Thus P (f) during this stage is sharply peaked at ω.
In reality, we expect two types of effects will somewhat
broaden this distribution. The first is fluctuations in f
values around ω due to random events typical of mul-
tiplicative random processes characterizing irreversibility
(e.g., monomers trapped in knots might not be able to
bound to the surface). Such fluctuations would be inter-
esting to characterize numerically following the example
of reference [69] in which a Monte Carlo method was used
to study the structure of a single fully collapsed chain on a
surface and an ω value was extracted using γbound ∼ ωN
for large N . We anticipate a second source of broadening
for chains arriving after toverlap. These chains will have f
values which decrease with time since some monomers will
be unable to bound due to the presence of earlier arrivers.
This would lead to a continuously broadening spectrum
of f values with increasing time. In practice, this over-
lap time is often close to the saturation time (e.g., for
N = 1000, toverlap = .25tchemsat ) so this broadening effect
has little time to develop.

4.2 Late stages: diffuse outer layer

As the surface density approaches saturation, a2Γbound ≈
1, the availability of surface sites on the surface becomes
scarce and the late-coming chains cannot fully adsorb on
the surface as the early arrivers did. Let us suppose that
the establishment of one surface attachment requires an
empty spot large enough to accommodate ncont bound
monomers, where ncont is a small-scale species-dependent
number similarly to ω. The surface density of these “super-
sites,” ρsuper, is becoming smaller with time and the mean
separation, lsep, between neighboring supersites increases
accordingly, lsep ≈ ρ

−1/2
super. Now in order for late-coming

chains to adsorb onto these surface spots, they have to
form loops joining up these sites as shown in Figure 9.
We model the adsorption of chains at these late stages by
assuming that the size s of such loops is the equilibrium
subcoil size corresponding to lsep, i.e.

as3/5 = lsep = ρ−1/2
super . (36)

Thus chains which adsorb at the instant when the typical
loop size in equation (36) is s, have a fraction of bound
monomers given by

f =
∂Γbound
∂Γ

=
ncont
s
. (37)

Now as Γbound approaches its asymptotic value,
Γ∞
bound, which is another non-universal small-scale–depen-

dent quantity of order a−2, then

∆Γbound = ncontρsuper = ncont
a−2

s6/5
, (38)
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s

llsep

Fig. 9. Typical configuration of adsorbed chain at late stages
of adsorption. Such chains can adsorb only onto free empty
sites (shown as gray discs) which are separated by lsep. They
thus form loops of s monomers, with as3/5 = lsep.

where ∆Γbound ≡ Γ∞
bound − Γbound and we used equa-

tion (36). Equation (38) is simpler to understand start-
ing from the completely saturated surface: it states that
if one were to unpeel chains from a completely saturated
surface so as to create ρsuper supersites, the number of
bound monomers freed would be ncont per supersite.

Now integrating equation (37) after using equa-
tion (38), one has

a2∆Γbound = ncont(a2∆Γ/6)6 , (39)

which together with equation (35) of the early stages de-
scribe the full theoretical relation between bound and to-
tal fractions plotted in Figure 2(a). Thus equation (39)
predicts a very sharp saturation of the bound fraction as
Γ → Γ∞.

Now since in our picture every point along the
Γbound(Γ ) curve corresponds to a unique value of f , see
equation (37), then the weighting of f values is given by

P (f) =
1
Γ∞

∫
dΓ δ(f − ∂Γbound/∂Γ )

=
1
Γ∞

(∣∣∂2Γbound/∂Γ 2
∣∣
∂Γbound/∂Γ=f

)−1

, (40)

which after using equation (39), leads to

P (f) = Cf−4/5 (f � 1) (41)

with C ≈ 6/(5a2Γ∞[ncont]1/5).
The full theoretical prediction for the final layer’s dis-

tribution of f values is thus the sum of equation (41) and
a sharply peaked function at ω from the early stages. The
overall distribution is shown in Figure 2(b), binned into
bins of width ∆f = 0.02. The binned distribution exhibits
2 peaks, of different origin: the peak at large f corresponds
to early-arriving chains and its position is species depen-
dent, while the peak at f = 0 represents a diffuse outer
layer shown in Figure 10 and is due to the universal small
f form, P (f) ∼ f−4/5.

Let us consider now the distribution of loop sizes in the
resulting diffuse layer, Ω(s), equal to the number of loops
of length s per unit area per unit loop length. This may be
found by noting that the bound mass corresponding to a
certain dΓbound has a unique s value and must thus equal

Fig. 10. Sketch of predicted final layer structure resulting from
irreversible polymer adsorption. The layer consists of two parts
(one chain from each part is highlighted): i) An inner region of
flattened down chains making ωN contacts per chain, where ω
is of order unity. ii) A diffuse outer layer build-up from chains
each making fN � N contacts with the surface. The values of
f follow a distribution P (f) ∼ f−4/5. Each f value corresponds
to a characteristic loop size for a given chain, s ≈ ncont/f .

the bound mass in loops of length s, namely ncontΩ(s)ds.
Using equation (38) this leads to

Ω(s) ≈ a−2s−11/5 . (42)

What density profile c(z) does this loop distribution gen-
erate as a function of distance z from the surface? To de-
termine the density profile, we follow similar arguments to
those of references [13–15] which relate loop distributions
to density profiles in both specific and general cases. We
do that by assuming that the density at a given height z is
due to contributions from loops longer than σ(z), where σ
is the loop length which extends spatially up to height z.
The density at a given height is determined by the number
of loops which are long enough to reach this height:

c(z) ≈ dσ(z)
dz

∫ ∞

σ(z)

dsΩ(s) . (43)

Since in our case loops are not stretched, one has z ≈
aσ3/5. Thus using equation (42) in equation (43) one ob-
tains the algebraic profile,

c(z) ≈ c(a)
(a
z

)4/3

, (44)

which interestingly has the same scaling form as de Gennes’
self-similar profile of equilibrium polymer layers [10].

Let us finally consider the kinetics of the building-up
of the diffuse layer. Since the rate of attachment is pro-
portional to the density of available surface sites, the early
kinetics of equation (33) generalize to

dΓ

dt
= φbulkQ∆Γbound . (45)

(In Eq. (45) we did not include free-energy barriers due
to loops of the already partially formed layer which would
present excluded-volume repulsion to new chains arriving
at an empty supersite. In fact, in order for our picture to
be self-consistent, such effects must very small; were there
any dangling loops near an empty supersite they would
adsorb onto this site.) Thus from equation (45) one has

a2 ∆Γ ≈ F (tchemsat /t)
1/5 ,

a2 ∆Γbound ≈ G (tchemsat /t)
6/5 (t > tchemsat ) , (46)
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Fig. 11. Time evolutions of total, Γ , and surface bound,
Γbound, monomers per unit area, as a function of time, as
predicted by theory. Both chemisorption (thin lines) and
physisorption (thick lines) are sketched. The total mass for
chemisorption grows initially linearly, Γ ∼ t, and then slows
down as the surface saturates, ∆Γ ≡ Γ∞ − Γ ∼ t−1/5. For
physisorption Γ ∼ t1/2 has diffusion-controlled form for all
times until saturation. The surface-bound part for chemisorp-
tion undergoes three regimes: initially Γbound ∼ t8/3, cross-
ing over to Γbound ∼ t and then to the late-stage satu-
ration behavior, ∆Γbound ∼ t−6/5. The surface-bound part
for physisorption follows initially diffusion-controlled kinetics,
Γbound ∼ t1/2, but for longer times the kinetics slow down,
∆Γbound ≡ Γ∞

bound − Γbound ∼ [1− (t/tphys
sat )

1/2]6.

after using equation (39). The prefactors F =
6(5ncont/6)−1/5, G = ncont(C/6)6 are close to unity.
Together with the short-time kinetics, equations (33)
and (34), these evolutions are sketched in Figure 11.

So far in this section good-solvent conditions were
assumed. Generalizing to the case of theta solvents is
straightforward, by replacing ν = 3/5 → 1/2. One finds
qualitatively similar results with ∆Γbound ∼ e−Γa2

replac-
ing equation (39), and the distribution of bound fractions
is now P (f) ∼ f−1, replacing equation (41).

5 Irreversible physisorption

We consider now the other important class of irreversible
adsorption: strong physisorption. In this case, monomer-
surface bonds form immediately upon contact and ad-
sorption kinetics are diffusion-controlled. Despite the com-
pletely different kinetics compared to chemisorption, we
find the resulting polymer layers have nevertheless almost
identical structure.

5.1 Early stages: monolayer formation

Initially, the surface is empty and it is thus inevitable that
any chain whose center of gravity diffuses within the coil
size [79, 81] RF = aN3/5 of the surface will adsorb. Thus
attachment of chains is diffusion-controlled and the sur-
face coverage grows as

a2Γ (t) ≈ φbulk
a

(Dt)1/2 , (47)

where D is the chain center-of-gravity diffusivity.
Consider now the part of adsorbed mass which has

bonded with the surface, Γbound. Immediately after the
first attachment, the subsequent monomer arrivals on the
surface occur at the rate of their diffusion on the surface.
Imagine there were no reactions and that the surface was
a penetrable plane. Then, given the coil is initially next to
the surface, all monomers would cross the plane at least
once within the bulk coil relaxation time τbulk [79, 81].
With reactions turned on, each time a monomer reaches
the plane, it would react with it. We expect the effect of
the resulting constraint to further accelerate the rate of a
new monomer arrival onto the surface and thus the chain
physisorption time τads would be at most τbulk. We do not
attempt to analyze the details of these kinetics involving
polymer hydrodynamics with increasing number of con-
straints. Such kinetics would anyway be very difficult to
detect experimentally since typical coil relaxation times
in solution are microseconds. Here, it is enough to know
that τads � τbulk, which is supported by numerical simula-
tions in the absence of hydrodynamic interactions in ref-
erence [70]. Thus provided the solution is dilute, φ < φ∗,
each chain adsorbs fast enough onto the surface before
other chains interfere with it.

Since the single-chain adsorption time is faster than
new chain arrival on the surface, a monolayer of flattened
chains starts to develop on the surface, just as in the case
of chemisorption. Defining ω to be the surface-bound part
of a completely collapsed chain, as in chemisorption, we
thus have

Γbound = ωΓ , (48)

This is the initial linear regime in Figure 2(a).
The kinetics of equation (47) proceed up to a time

at which the density of available surface sites starts to
become small, i.e. when Γ ≈ a−2. This occurs at a time
of order

tphyssat ≈ τbulk
(
φ∗

φbulk

)2

N2/5 . (49)

After this time, new chains must form loops joining discon-
nected empty sites and a diffuse layer starts to build up.

5.2 Late stages: diffuse outer layer

For times longer than tphyssat , the late-coming chains start
to see a continuously decreasing density of available sites
for adsorption. Will the adsorption kinetics continue to be
diffusion-controlled? Consider a chain which was brought
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by diffusion to within one coil size RF of the surface. Let
us see if a bond forms before it diffuses away. The number
of collisions the chain makes with a certain site on the wall
within RF of its center of gravity before it diffuses away is

Ncoll ≈ (τbulk/ta)Nsite , Nsite ≈ rNa
3

R3
F

. (50)

Here ta is the monomer relaxation time and Nsite is
the mean number of the coil’s monomers per surface
site within the coil’s projected surface area. This would
simply be of order Na3/R3

F , but the presence of the hard
wall reduces it by a factor r ≡ Zsurf(N)/Zbulk(N) = 1/N
as in equation (32). Using [79, 81] τbulk ≈ ta(RF /a)3, one
has from equation (50)

Ncoll ≈ 1. (51)

Thus the chain makes of order one surface contact with
every site on the surface within the coil size. It follows
that unless the surface density of available sites is so
small as to be of order one per R2

F , it is inevitable
that during the chain’s residence time on the surface
at least one monomer-surface bond will form. Thus the
diffusion-controlled kinetics of equation (47) continue up
to the point where essentially every empty site is filled.

What is the mode of adsorption of these late-coming
chains which attach to the few empty sites? We model ad-
sorption in these late stages in a similar way to the build-
up of the diffuse outer layer in chemisorption (Sect. 4.2).
The late-coming chains, after adsorbing on an empty
site large enough to accommodate ncont monomers, form
bridges to nearby empty sites which are loops of s
monomers when the average separation between neigh-
boring empty sites is lsep ≈ asν (see Fig. 9). This sepa-
ration becomes larger as more and more chains adsorb.
Thus the diffuse layer density profile c(z), distributions
of loop sizes, Ω(s), and distribution of fraction of ad-
sorbed monomers per chain, P (f), are the same as for
chemisorption (Sect. 3). Including the monolayer contri-
bution due to short times, the resultant overall Γbound(Γ )
and P (f) relations are plotted in Figure 2. This is a re-
peat of the chemisorption curves with the exception of the
early Γbound ∼ Γ 8/3 regime exclusive to chemisorption.
The sketch of the resulting polymer layer is the same as
Figure 10.

The major distinction between chemisorption and ph-
ysisorption arises in the kinetics of layer build-up. The dif-
ference in the Γ (t) kinetics is evident by comparing equa-
tion (47) for physisorption, valid up to complete surface
saturation, to equations (33) and (46) for chemisorption.
Similarly, the kinetics of the bound fraction, Γbound are
also very different. For physisorption, the short-time kinet-
ics are given by substituting equation (47) in equation (48)
while the long-time behavior is found using equation (47)
in equation (39), leading to

a2∆Γbound ≈{
ωφbulka

−1(Dt)1/2 (t� tphysfinal ) ,

ncont (a2Γ∞)6
[
1 − (t/tphysfinal )

1/2
]6

(t→ tphysfinal ) .
(52)

Here tphysfinal is the complete surface saturation time, af-
ter which the diffuse layer has completely formed. This
timescale is of the same order of magnitude as tphyssat since
the surface coverage of the outer layer,

∫ RF

a
dz c(z) ≈ a−2,

is of the same order as the monolayer coverage. Thus from
equation (47) one sees that the time for diffuse layer for-
mation is of the same order as the time of monolayer for-
mation since both require the diffusion to the surface of
about the same quantity of mass. The complete evolution
of Γ (t) and Γbound(t) is sketched in Figure 11.

6 Discussion

6.1 Comparison of theory with experiment

We studied theoretically the structure of polymer layers
formed by irreversible adsorption onto surfaces from di-
lute solution under good- or theta-solvent conditions. Rel-
atively few theoretical works have addressed irreversibility
in polymer adsorption. In references [67, 68], irreversible
physisorption was studied analytically and numerically
within the framework of self-consistent mean-field the-
ory. These workers found that, compared to equilibrium,
the irreversibly formed layers are different in that i) the
asymptotic surface coverage Γ∞ was larger in equilibrium,
and ii) in the irreversible case the density profile c(z) was
found to be larger for small and large z, but smaller for in-
termediate values as compared to equilibrium. In another
work [46], single-chain chemisorption of PMMA onto Al
was studied by solving numerically the loop kinetics, equa-
tion (19), using chain statistics corresponding to theta-
solvent solutions. It was found that the chain adsorbs
in a zipping mechanism the origin of which was greatly
enhanced reactivities for monomers neighboring a graft
point. These reactivities were taken as greatly enhanced
on the basis of electronic structure calculations [82,83].

In this work the cases of irreversible physisorption and
chemisorption were examined separately. We found that
in both cases the final layer consists of two regions. In
an inner region of completely flattened chains, each chain
has on average ωN monomers bound to the surface. The
value of ω is species dependent and represents the effect
of steric constraints at the monomer level which prevent
all monomers of the chain from bonding. The outer re-
gion is a tenuously attached diffuse layer of chains making
fN � N contacts with the surface. The distribution of
f values among chains is universal and in a good solvent
follows P (f) ∼ f−4/5 for f � 1. This double-layer struc-
ture is illustrated in Figure 10 which exhibits two peaks at
small and large f , respectively. Our theory cannot capture
the numerical value of the peak amplitude near f = ω, but
the existence of a peak (or possibly of a depletion region)
is due to small-scale effects. The first layer of flattened
chains is special because these arrive at a bare surface,
and chain features on the scale of a monomer size are in-
volved. In our picture, one can think of the next set of
arriving chains (which are just starting to build up the
outer tenuously attached region) as seeing a different sur-
face, one containing a certain areal fraction of empty sites
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less than unity. This set cannot flatten down completely.
The third set of arriving chains sees a surface containing
a yet lower density of free sites, and so on. For large layer
numbers, a chain sees a universal surface whose features
evolve self-similarly with increasing layer number. This
leads to a universal power law form for P (f). Returning
to the earliest layers, these are formed before universality
onsets, reflected in a non-universal feature in P (f) near
f = ω.

Using infrared absorption spectroscopy, measurements
of P (f) for irreversible physisorption of PMMA onto ox-
idized silicon have been pioneered in the experiments of
references [31–33], measurements from which are repro-
duced in Figure 2(b). In this figure, the theoretical pre-
diction is compared to experiment by binning values in
ranges ∆f = 0.02 and converting analytical predictions
to a histogram. Since f = 0.08 is the lowest observed ex-
perimental value, we cut off the theoretical distribution at
the same point for the sake of comparison. The contribu-
tion from the inner layer is represented by a delta-function
centered at ω ≈ 0.47, though as discussed in Section 4,
we expect this to be broadened. We see that the agree-
ment with experiment is good and captures the bimodal
shape of the distribution. We note that measuring lower
f values to see a clear signature of a power law regime
may be difficult: our theory suggests these chains are a
small fraction of the total chain population (the integral
of P (f) is dominated by large f). However, since those
chains lie in the outermost region of the layer, they would
determine important physical properties such as hydro-
dynamic thickness and the strength of interaction of the
polymer layer with an approaching interface. In comparing
with theory above, we have used our predictions for good
solvents. However, the experiments of references [31, 32]
were performed under solvent conditions slightly better
than theta. Thus, it may be that a more appropriate com-
parison is with our theory specialized to theta solvents,
for which the predicted P (f) ∼ 1/f is very similar.

The building-up of the double layer is apparent in
the shape of Γbound(Γ ) where Γbound, Γ , are the surface-
bound and the total surface coverage, respectively. For
irreversible physisorption we found that initially Γbound ≈
ωΓ . As the surface saturates, the diffuse layer starts to
develop and (Γ∞

bound−Γbound) ∼ (Γ∞−Γ )6 as the asymp-
totic values (denoted by ∞) are approached which are of
order a−2, where a is the monomer size. We thus predict a
very sharp saturation of the bound fraction as Γ saturates;
the resulting curve is plotted in Figure 2(a). A very simi-
lar curve has been measured in the experiments discussed
in the previous paragraph [31, 32], where the initial slope
was ω ≈ 0.47, the value we used in Figure 2(b). In addi-
tion the shape of the curve was found to be independent
of chain length, which is also consistent with our model.
For chemisorption, the curve is similar but we predict an
additional Γbound ∼ Γ 8/3 regime as shown in Figure 2(a).

Contrary to physisorption, the experimental picture
for chemisorption is much less clear, though since time-
scales are intrinsically much longer, the kinetics might be
easier to probe. Experiments on various systems have been

performed [44,45,48,84–86] the results of which, however,
cannot be interpreted within the framework of our present
theory since they involved simultaneous physisorption and
chemisorption. In certain cases the degree of polymer func-
tionalization was also varied [44,45,84]. Clearly, the depen-
dence of resulting polymer structures on degree of poly-
mer or surface functionalization is an interesting aspect
deserving further study.

This paper has addressed both the structure of the
final layer and the irreversible kinetics of its formation.
Chemisorption kinetics are very slow and are chemically
controlled. We found that initially Γ ∼ t, followed by Γ ∼
t−1/5 as the surface saturates. We remark that for long
enough times, adsorption onto a planar surface always be-
comes diffusion-controlled after a Q-dependent timescale
[87, 88], where Q is the reaction rate upon monomer-
surface contact. Here our assumption is that Q is small
enough such that this cross-over time is very large, which
is the typical case for ordinary chemical species. For ph-
ysisorption, diffusion-controlled kinetics apply until satu-
ration, Γ ∼ t1/2. The corresponding time dependencies for
Γbound follow from Γbound(Γ ) and are shown in Figure 11.

A large part of this work has focused on single-chain
chemisorption. Unlike physisorption, where single-chain
adsorption is complete at most after the coil’s bulk re-
laxation time, τbulk, we found that the adsorption time in
chemisorption is much larger, τads ≈ Q−1N3/5. Thus, for
typical Q ≈ 1 s−1, N = 1000, one has τads ≈ 60 s, a time
accessible to experimental measurements. During τads the
chain adsorbs onto the surface in a mode we call accel-
erated zipping: initially, the chain adsorbs in a zipping
mechanism growing outwards from the first attachment
point with the surface, but with increasing time distant
monomers adsorb forming large loops and new sources
for further zipping which accelerate the chain’s collapse.
The distribution of these loop sizes follows a power law
ω(s) ∼ s−7/5 while the number of bound monomers grows
as γbound(t) ∼ t5/3.

6.2 Differences between irreversible and equilibrium
layers

We conclude with a general comparison between the fi-
nal non-equilibrium layers predicted by our theory and
equilibrium layers. This discussion is limited to good sol-
vents. Our results for the final loop distribution of the
layer, Ω(s) ∼ s−11/5 and density profile c(z) ∼ z−4/3

have interestingly identical scaling form to the correspond-
ing equilibrium results. On the other hand, the configura-
tions of individual chains are very different. In the equi-
librium layer a given chain has ND(s) loops of length
s or greater, where D(s) ≡ ∫ ∞

s
ds′Ω(s′) ∼ s−6/5. Be-

cause of screening effects, these are essentially indepen-
dent blobs and their 2D spatial extent parallel to the sur-
face is [ND(s)]1/2as3/5 = aN1/2. This is true for all scales
s; in particular, there is order one loop of length N5/6,
also of size aN1/2. Hence a typical chain has a size [6]
of order aN1/2, the ideal result (to within logarithmic
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corrections [6]). Chains in the non-equilibrium layer are
by contrast of size aN3/5, due to the adsorption kinetics
which in the case of chemisorption entailed occasional ad-
sorption of very large loops of length N , which ensured the
final state of the chain extends a distance of order aN3/5

parallel to the surface. We did not attempt to unravel the
complex details of physisorption, but our assumption was
that the 3D coil ends up being roughly projected onto the
2D surface, leading again to a lateral size aN3/5.

The most fundamental distinguishing feature of the
non-equilibrium layer is that different chains have differ-
ent loop distributions and fractions of adsorbed segments,
f , which are frozen in time. There is no longer one sin-
gle thermodynamic f . Instead, there are infinitely many
classes of chains, each with its own f value, and the num-
ber of chains in each class is proportional to P (f). Each
chain has a characteristic loop size, s ∼ 1/f .

This is very different to the equilibrium layer where
all chains are statistically identical, in that every chain
explores in time the same range of f values with the same
relative weighting P eq(f). In fact, one can show that for
large N this distribution P eq is very sharply peaked at a
mean value f̄ of order unity, with width of order N−1/6.
(The mean value is due to small loops of order unity while
the fluctuations are due to the mass in very large loops
with length of order N5/6. Since there is order one such
loop, this diminishes f by an amount of order N−1/6.)
Thus, even at any fixed moment in time it is still a true
statement that almost all chains have the same f value,
f̄ , to within fluctuations which are small for large enough
N . We remark that there is a small population of chains,
a fraction of order N−1/5 of the total, with f values far
removed from the mean: these are the chains with tails [15]
of length of order N which determine the layer height
≈ aN3/5.

These differences in chain statistics between irre-
versible and equilibrium layers have important implica-
tions for various physical properties of the layer. Consider
a physisorbing system whose surface relaxation kinetics
are very slow, but not truly irreversible (we expect this is
a rather common case). In this case for times of order the
layer formation time we expect the layer is well described
by the irreversible P (f). For much longer timescales on
which surface bonds are reversible, equilibration processes
will slowly evolve P (f) into P eq(f). Our picture predicts
that during this process the total coverage, density profile,
and loop distribution remain unchanged to within pref-
actors of order unity. Single-chain statistics will be sig-
nificantly affected, however, and individual chains must
shrink in order to occupy a much smaller region in space.
This change is expected to profoundly modify the physical
properties of the layer. For example, the fraction of chains
with long loops and tails of order N will be reduced by a
factor N−1/5, thus strengthening the outer region of the
layer which is exposed to the bulk. Similarly, in experi-
ments probing the kinetics of exchange between chains in
the bulk and those in the layer [24–30,33,36–39], we expect
strong aging effects since the number of easily exchange-
able, loosely attached chains is decreasing with increasing

aging time. This would lead to a decrease of the initial ex-
change rate with aging time as observed [28,29,37,38]. Fur-
ther theoretical work is clearly needed to interpret the phe-
nomenology of these experiments. One unexplained obser-
vation, for example, concerns poly(ethylene oxide) adsorp-
tion onto silica where the bulk-surface exchange rate of
chain subpopulations in non-equilibrium layers has been
measured to be independent of the time the subpopulation
was incorporated in the layer [39].

What is the origin of the theoretically predicted irre-
versible layer’s overall loop distribution being the same
as that in equilibrium? This is rooted in the kinetics of
our model. In the late stages, we assumed the equilibrium
relation between loop size and number of monomers s in
the loop, R ∼ sν . That is, a given loop is assumed to
have equilibrium statistics. It is important to note that
this does not by itself lead to the equilibrium loop distri-
bution. Our basic assumption on the late-stage kinetics is
that the kinetically selected loop size R at any moment
is determined by the current density of free supersites,
ρsuper ∼ 1/R2. Taken together with R ∼ sν , this then
leads to the Ω(s) of equation (42). These kinetics are mean
field in character, assuming uniformly smeared free sites
determined by the current global value of ρsuper rather
than any local feature. The correct choice of kinetics is
governed by the kinetics of the chain adsorption process.

To illustrate this point, consider a general situation,
involving chain adsorption onto a d-dimensional surface.
Suppose the mechanism of adsorption is pure zipping
and follow the process from a starting situation where
the surface has a uniform density of empty surface sites,
ρsuper = l−d. Roughly speaking, such a zipping chain per-
forms a simple random walk on the surface, each step fill-
ing one empty site and producing a loop of length s = l1/ν .
The statistics of this process depend on dimensionality.
i) Suppose d = 1. Since a 1D random walker explores
space “compactly” [89], i.e. visits each site within its ex-
ploration volume many times, by the time the zipping is
complete and the chain has fully adsorbed, a surface patch
depleted of empty sites will have been created in the region
where the chain has adsorbed. Later-arriving chains can
then occupy only the empty regions between such patches
created by previously adsorbed chains. We expect the den-
sity of free sites to fluctuate very strongly, invalidating any
mean-field approach. ii) d = 3. The zipping process is now
a “non-compact” random walk, occupying only a small
fraction of the free-surface sites within its exploration vol-
ume. Fluctuations are small, and the mean-field approach
which assumes an essentially uniform distribution of free
sites of density ρsuper decreasing quasi-statically in time
is valid. This is the assumption implicit in the present pa-
per. iii) d = 2. Random walks are now marginally compact
and one expects logarithmic corrections to the mean-field
picture.

The situation treated in this paper is of course d = 2.
Thus, one might expect logarithmic corrections to the loop
distribution of equation (42) which had arrived at via the
mean-field argument. In fact, for two reasons we expect
the zipping process to execute a surface walk somewhat
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expanded from a simple marginally compact 2D random
walk. Firstly, no site can be adsorbed onto twice by the
zipping random walk. Thus walks are repelled from fre-
quently visited areas. This is a kind of self-avoidance, and
one anticipates swelling of the walk somewhat similarly to
the “true” self-avoiding walk [90] and the “kinetic growth”
walk [91]. Secondly, the chain adsorption processes we
have studied are not simple zipping. For chemisorption,
the zipping is accelerated by occasional very large steps
producing loops of all sizes up to N . These large excur-
sions result in the flattened chain occupying an area of
order N6/5 rather than N . Since the fraction N−1/5 of
occupied sites within this area is small, one returns to a
non-compact situation where mean field applies. In reality,
this is over-simplified, since local zipping from nucleation
points presumably involves correlations of the type charac-
terizing pure zipping, so non-uniform depletion of empty
sites may occur near zipping centers. For physisorption
the process is even more complex, presumably involving a
combination of local diffusion-mediated zipping and large
loop formation, but one expects a projection area onto the
surface again of order N6/5 which naively suggests non-
compact character.

From the above remarks, it is clear that stepping be-
yond our rather simple approach to irreversible adsorption
involves many complex issues. We hope our work moti-
vates future experiment and theory in this direction.

This work was supported by the National Science Foundation
under grant no. DMR-9816374.

Appendix A. Single-chain chemisorption:
interior monomers attach first

In this appendix we show that a single chain is much
more likely to chemisorb on a surface by one of its interior
monomers rather than with one of its ends. Consider the
s-th monomer, where by definition s is the length of the
shorter part of the chain, the other having length N − s.
The reaction rate of this monomer with the surface is pro-
portional to the partition function of the chain anchored
by this monomer on the surface:

Zcont(s) = µNη(s/N)Nγ2−1 ,

η(x) ≈
{
xγ2−γ1 (x� 1) ,
1 (x→ 1/2) , (A.1)

where µ is a constant of order unity. We derived Zcont(s) by
demanding that i) it is a power in s and ii) in the limits
s → 1 and s → N/2, one obtains the known partition
functions Zcont(1) ≈ µNNγ1−1, Zcont(N/2) ≈ µNNγ2−1,
respectively. The numerical values of γ1, γ2 are [6, 77, 78]
γ1 ≈ 0.68, γ2 = γ− 1 ≈ 0.16, where γ is the susceptibility
exponent [79].

Now the total rate for any monomer to react is pro-
portional to

∫ N/2

1
dsZcont(s). Since γ2−γ1 > −1 this inte-

gral is dominated by large s. Hence it is much more likely
for a monomer in the middle to be the first one to react

with the surface, rather than an end, roughly by a fac-
tor NZcont(N)/Zcont(1) ≈ N1+γ2−γ1 ≈ N0.48. Thus the
accelerated zipping always propagates outwards from an
interior monomer, as schematically illustrated in Figure 6.

Appendix B. Proof that equation (19)
satisfies mass conservation

We show in this appendix that equation (19) conserves
the total number of monomers M tot ≡ ∫ ∞

0
ds s ωτ (s), by

showing that dM tot/dτ = 0. This is equivalent to show-
ing that the integral of the rhs of equation (19) over all
positive s is zero. Changing variables from s′ to x = s/s′
in the first term, and to x = s′/s in the second term, on
the rhs of equation (19), respectively, one has

2
∫ ∞

s

ds′ ωτ (s′) k(s|s′) −
∫ s

0

ds′ ωτ (s) k(s′|s) =

2
sν

∫ 1

0

dxωτ

( s
x

) ζ(x)
x1−ν

− ωτ (s)
sν

∫ 1

0

dx ζ(x) (B.1)

after using equation (11). Multiplying equation (B.1) by
s, integrating over all positive s and changing variables
from s to y = s/x, one finds that the result vanishes by
virtue of the identity 2

∫ 1

0
dxxζ(x) =

∫ 1

0
dx ζ(x) for ζ(x)

symmetric around x = 1/2. Thus M tot is conserved.

Appendix C. Derivation of equation (24)
from equation (23)

Defining ξ ≡ N − s and ω̃τ (ξ) ≡ ωτ (N − ξ), one has from
equation (23)

d
dτ

∫ ξ

0

dξ′ ω̃τ (ξ′) = −
∫ ξ

0

dξ′
AQ ω̃τ (ξ′)
(ξ − ξ′)ν

. (C.1)

Laplace-transforming ξ → E (we allow ξ to take any pos-
itive value, i.e. we seek the N → ∞ solution of Eq. (23))
one has from equation (C.1):

d
dτ
ω̃τ (E) = −AQEν ω̃τ (E) , (C.2)

which after integration over τ becomes

ω̃τ (E) = e−A Q τ Eν

. (C.3)

We used the initial condition ω̃0(E) = 1, since ω0(ξ) = δ(ξ)
(see Eq. (23)). Laplace-inverting [92] equation (C.3), one
recovers equation (24).

Appendix D. Steady-state solution of
equation (21)

We seek a quasi-static power law solution, ωτ (s) = H/sα,
to equation (27). Substituting to the left-hand side of
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equation (27) one has∫ ∞

s

ds′ λ(s|s′)ωτ (s′) =

− QH

sα+ν−1

∫ 1

0

dy yν−2+α

∫ 1−y

y

dxζ(x) , (D.1)

after changing variables to y = s/s′. Here we took the well-
defined limit N → ∞ since the solution we seek should
be independent of the tail’s length. The only value of α
for which equation (D.1) is zero is α = 2 − ν. The self-
consistency of the quasi-static solution, equation (28), can
be verified by substitution in equation (21) and showing
that for loop sizes where the solution is valid (s < smax

τ )
corrections arising from integration over s′ > smax

τ are
small.
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