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Abstract. – We study kinetics of single-species reactions (“A + A → ∅”) for general local

reactivity Q and dynamical exponent z (rms displacement xt ∼ t1/z.) For small molecules
z = 2, whilst z = 4, 8 for certain polymer systems. For dimensions d above the critical value
dc = z, kinetics are always mean field (MF). Below dc, the density nt initially follows MF decay,
n0 − nt ∼ n2

0Qt. A 2-body diffusion-controlled regime follows for strongly reactive systems

(Q > Q∗ ∼ n
(z−d)/d
0 ) with n0 − nt ≈ n2

0x
d
t . For Q < Q∗, MF kinetics persist, with nt ∼ 1/Qt.

In all cases nt ≈ 1/xdt at the longest times. Our analysis avoids decoupling approximations by
instead postulating weak physically motivated bounds on correlation functions.

The kinetics of reactions between diffusing particles are anomalous in low spatial dimen-
sions [1, 2]. Mean-field (MF) theory, according to which the reaction rate is proportional to
the product of reactant densities, is only valid for dimensions d above a critical value dc. In
the most fundamental problem of single-species reactions into inert products, A+A→ ∅, for
d < dc = 2 the density decays asymptotically as 1/td/2, independently of the magnitude of the
local chemical reactivity Q and initial reactant density. That is, in low dimensions the 1/Qt
decay predicted by MF theory is invalid. This is supported by numerical simulations [2-5]
and renormalization group studies [6]. For the case of “infinitely” reactive particles for which
Q = ∞ (probability of reaction per collision unity), rigorous bounds [7] on the asymptotic
decay of density have been derived and in one dimension exact solutions exist [8-11]. Many
other workers have employed approximate methods starting from the hierarchy of coupled dy-
namical equations for correlation functions of all orders which is then truncated by expressing
higher-order correlation functions in terms of lower-order correlations [1, 12].

In this work we address the two major aspects of single-species reaction kinetics which
remain poorly understood. 1) Although it is known that at the shortest timescales MF
kinetics apply [13,14], the crossover from the short-time MF kinetics to the asymptotic 1/td/2

behavior has not been established. Some groups on the basis of numerical simulations [15-17]
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have claimed an “intermediate” time regime during which density decays according to a non-
universal Q-dependent power law. 2) No systematic theory has been able to predict reaction
kinetics for general Q [6,13,14] across all time regimes. As a result numerical simulations have
been fitted to empirical rate laws [18,19].

The present work will also consider general dynamics. The above results were for reactions
between particles obeying simple Fickian diffusion for which the dynamical exponent z describ-
ing rms displacement xt as a function of time, xt ≈ a(t/ta)

1/z , is equal to 2. Here ta is the time
corresponding to diffusion distance of order the particle size a. For reactive groups attached to
long polymer chains z can also be 4 or 8, depending on time and degree of entanglement [20].
In these cases the critical dimension is dc = z [21] below which the asymptotic density decay
is 1/xdt [22].

In this letter we give a complete description of the sequence of kinetic regimes for the single-
species reaction kinetics for arbitrary values of dynamical exponent z (where z is assumed
a fixed number independent of dimension). Results are derived after postulating simple
physical bounds on correlation functions without the need to resort to ad hoc decoupling
approximations. In agreement with previous studies, we find that below the critical dimension
dc = z the density nt decays as 1/xdt at long times. We find two possible kinetic sequences for
d < dc, depending on the magnitude of Q with respect to a marginal value Q∗. For Q < Q∗

(“weak” systems) the crossover to nt ≈ 1/xdt occurs after a 1/t MF regime. For Q > Q∗

(“strong” systems) the crossover to 1/xdt occurs before the 1/t regime has developed. In this
case a short-time regime exists during which the number of reactions is proportional to the
reactant exploration volume, n0 − nt ≈ n2

0x
d
t .

We begin by noting that the average reaction rate ṅt ≡
d
dtnt at point r1 is proportional [23]

to the 2-body correlation function ρt(r1, r2) evaluated at r1 = r2. Due to translational
invariance ṅt = −λρt(0, 0), where λ ≡ Qad. Now the dynamical equation for ρ involves
the 3-body correlation function ρ(3). Following Doi [23] the exact equation is

ρt(r1, r2) = n2
0 − λ

∫
dr′1 dr′2

∫ t

0

dt′Gt−t′(r1, r2, r
′
1, r
′
2) ρt′(r

′
1, r
′
2)δ(r′1−r′2)

− λ

∫
dr′1dr′2dr′3

∫ t

0

dt′Gt−t′(r1, r2, r
′
1, r
′
2)ρ

(3)
t′ (r′1, r

′
2, r
′
3) {δ(r′1−r′3)+δ(r′2 − r′3)} , (1)

where Gt(r1, r2, r
′
1, r
′
2) is the net weighting for two particles to arrive at r1, r2 given starting

points r′1, r
′
2, in the absence of reactions. The sink terms on the right-hand side of eq. (1)

describe the three ways in which reactions diminish ρt from its initial value n2
0. The first

two-body sink term subtracts off pairs which failed to reach r1, r2 because their members
reacted with one another at r′1 at time t′. The remaining two sink terms subtract off pairs
which would be at r1, r2 but only one member of which reacted at time t′ at location r′3. Such
a reaction involves a third particle, weighted by the appropriate 3-body correlation function.
In eq. (1) we used a δ function as a reactive sink which is a coarse-grained description of the
reaction process over a scale of order the particle size a.

Notice that eq. (1) is not closed in terms of ρt since it involves the unknown ρ
(3)
t . It is

in fact impossible to write a closed exact equation for ρt since correlation functions of all
orders are coupled in an infinite hierarchy of dynamical equations [23]. This complication
may be resolved by approximating 3-body correlations as products of lower-order correlation
functions [1]. However we are able to write a closed equation for ρt after assuming much less
restrictive bounds on the magnitude of correlation functions. First we transform eq. (1) to an
expression for the function qt(r, 0) ≡ ρt(r, 0)/n2

t . Notice that qt(0, 0) = kt/λ, where the rate
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constant kt is defined by ṅt = −ktn2
t . We find that eq. (1) is transformed into

qt(r, 0) = 1−

∫ t

0

dt′Gsep
t−t′(r, 0) kt′ + ϕt(r) , (2)

where Gsep
t (r1, r2) ≡

∫
dr′2 Gt(r

′
1, r
′
1 + r1, r

′
2, r
′
2 + r2) is the probability density with which two

particles are separated by r1 at time t given initial separation r2. The function ϕt is defined
by

ϕt(r) ≡

∫ t

0

dt′
∫

dr′Gsep
t−t′(r, r

′) kt′ µt′(r
′), µt(r) ≡ 2

{
ρt(r|0)− ρ(3)

t (r|0, 0)
}
. (3)

Here ρt(r|0) ≡ ρt(r, 0)/nt and ρ
(3)
t (r|0, 0) ≡ ρ

(3)
t (r, 0, 0)/ρt(0, 0) are the conditional densities

at r, given one and two particles, respectively, at the origin.
Now we would like to solve eq. (2) for qt(0, 0). This requires information on the properties

of ϕt(0) which involves unknown 2-body and 3-body conditional densities. To proceed, let us
now make the following assumption: We assume that the more particles placed at the origin,
the lower the conditional density. Chemical reactivity can only induce anticorrelations. Thus

ρ
(3)
t (r|0, 0) ≤ ρt(r|0) ≤ nt (assumption) . (4)

Equation (4) implies the following constraints on µ:

0 ≤ µt(r) ≤ 2nt,

∫ t

0

dt′kt′ ≥

∫ t

0

dt′
∫

dr′ kt′ µt′(r
′) . (5)

The first constraint immediately follows from eq. (3) while the second is obtained by requiring
that the magnitude of the second term on the right-hand side of eq. (2) exceeds that of the
3rd term (since qt ≤ 1) and then integrating over r.

On the strength of the above constraints, eq. (5), we will argue below that the solution of
eq. (2) for qt(0, 0), but with the term ϕt(0) deleted, gives the correct power law solution for kt
to within a constant prefactor. Expressing qt(0, 0) in terms of kt, setting r = 0 and deleting
ϕt(0), eq. (2) becomes

kt = λ− λ

∫ t

0

dt′St−t′kt′ , (6)

where we have introduced the return probability St ≡ Gsep
t (0, 0) ≈ 1/xdt . The validity of

this approximation is justified by self-consistent arguments whose outline is as follows (full
details will be published elsewhere [24]). If one accepts eq. (6) then one obtains a sequence of
power law regimes in time for kt and nt (see below). Using these solutions in eq. (5) and in
the expression for ϕt(0) (eq. (3)), we have determined the function µmax

t′ (r′) which maximizes
ϕt(0) (for a given time t) subject to the constraints of eq. (5). This in turn implies an upper
bound ϕmax

t (0) on ϕt(0). Now for short times, we find that this bound is much less than unity:
hence ϕt(0) may be deleted in eq. (2) without error and even prefactors are expected to be
correct. Meanwhile, for long times (nt ≈ 1/xdt ) we find ϕmax

t (0) = A, where A is a constant of
order unity. We then make a second simple assumption: we assume kt remains a power law
at long times. We have shown that the deletion of ϕt(0) from eq. (2) is then valid insofar as
it will generate the correct power laws for kt (albeit with possibly incorrect prefactors).

It is now straightforward to solve eq. (6) for kt. For d > z the integral term in eq. (6) is
negligible and one recovers the expected MF rate constant k ≈ λ, true for all times. For d ≤ z
one finds two regimes: for t < t∗2 (see definition eq. (9) below) the integral term in eq. (6) is
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Fig. 1. – Snapshots of particle distributions during various kinetic regimes for d < z. Rms displace-
ment is xt and l is the typical initial separation among reactants. (a) Times t � tl. Reactions are
due to the few isolated pairs which happened to be initially close enough such that their exploration
volumes (indicated by dashed lines) overlap by t. For strong systems most of these pairs will have
reacted by t∗2, leading to n0−nt ≈ n

2
0x
d
t . (b) The situation at time t = tl. A region of size xdt contained

of order one particle initially. For strong systems reaction kinetics are already diffusion-controlled and
a crossover occurs to nt ≈ 1/xdt . (c) Weak systems, tl � t� t∗2. For weak systems MF kinetics persist
beyond tl. Many reactants now exist within the exploration volume of a given particle. Reaction with
the mean density field occurs at a timescale t∗m leading to nt ∼ 1/Qt for t∗m � t � t∗2. (d) For both
weak and strong systems, at sufficiently long times only of order one particle survives within a volume
of size xdt , implying nt ≈ 1/xdt .

small compared to λ and can be neglected. For t > t∗2, the solution is obtained by balancing
the integral term with λ. One finds

kt ≈

{
λ (t� t∗2)
xdt /t (t∗2 � t)

(d < z) , kt ≈

{
λ (t� t∗2)
ad/[ta ln(t/ta)] (t∗2 � t)

(d = z) , (7)

as can be verified by direct substitution in eq. (6). Substituting kt in ṅt = −ktn2
t , it is easy to

show that for low dimensions two possible sequences of reaction kinetics may occur, depending
on the magnitude of Q:

nt ≈

{
n0 − λn2

0t
t∗2−→ n0 − n2

0x
d
t

tl−→ 1/xdt (Q > Q∗, strong)

n0 − λn2
0t

t∗m−→ 1/λt
t∗2−→ 1/xdt (Q < Q∗, weak)

(d < z) , (8)

where

t∗2
ta
≡ (Qta)z/(d−z),

tl

ta
≡ (n0a

d)−z/d, t∗m ≡
1

λn0
, Q∗ta ≡ (n0a

d)(z−d)/d . (9)

For the marginal case (d = z) one simply replaces xdt in eq. (8) by ad(t/ta)/ ln(t/ta). The
timescales t∗2 and tl are then modified to t∗2 ≡ tae

1/(Qta), tl ≡ ta(n0a
d)−1 ln[1/(n0a

d)], while
Q∗ta ≡ 1/ ln(tl/ta).

These results for d < z have a simple physical interpretation (see fig. 1). Now if one were to
assume MF theory were valid, i.e. that particles are distributed at all times as in equilibrium
and hence ṅt = −λn2

t , the density would decay as n0−λn2
0t initially, crossing over to 1/λt for

t � t∗m. Thus t∗m would be the timescale for a particle to react with the mean reaction field
supplied by the other reactants. For dimensions smaller than the critical value dc = z, however,
reactions induce nonequilibrium correlations and MF kinetics break down beyond a certain
timescale. Consider a pair which happened to be initially within diffusive range, i.e. within
xt, as in fig. 1(a). Since each reactant explores a volume of order xdt approximately uniformly,
the number of collisions Ncoll after t/ta “steps” increases roughly as (t/ta)(ad/xdt ) ∼ t1−d/z.
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Thus for d < dc the net reaction probability QtaNcoll is an increasing function of time which
becomes of order unity at the timescale t∗2 of eq. (9). For t > t∗2 a depletion hole of size xt
thus develops in the 2-body correlation function, invalidating MF theory.

For d < dc, the sequence of kinetic regimes after t∗2 depends on the relative magnitudes of
t∗2 and t∗m. Another relevant timescale is tl, namely the time to diffuse a distance of order
the typical initial particle separation. One can easily show that the magnitude of t∗m always
lies in between those of t∗2 and tl. The condition t∗2 = t∗m = tl defines the critical reactivity
Q∗ in eq. (9). Case 1: Strongly reactive species, Q > Q∗ (or equivalently t∗2 < t∗m < tl). For
t∗2 < t < tl reactions are due to the few isolated pairs which happened to be initially within
diffusive range (fig. 1(a)). Since most of these pairs will have reacted by t, the number of
reactions per unit volume during this time regime is proportional to the number of pairs per
unit volume initially within xt, n

2
0x
d
t . Now for times t > tl, a region of volume xdt contained

initially several particles. Since only of order one of these particles could have survived by
t, this implies a 1/xdt density decay. Notice that t∗m is irrelevant in strong systems. Case 2:
Weakly reactive species, Q < Q∗ (or tl < t∗m < t∗2). Now when nonequilibrium correlations
develop after t∗2 the 1/λt MF kinetics have already developed. Since t∗2 > tl, the same reasoning
as in the strong case for t > tl implies that a direct crossover occurs after t∗2 to 1/xdt decay.

To summarize, we argued that the time-dependent rate constant kt in single-species reaction
kinetics is given by a Smoluchowski-type expression (eq. (6)). Equivalent expressions have been
the starting point of previous works [25,26,22]. Here we have justified eq. (6) based on simple
bounds on correlation functions. We argued that the solution for the rate constant below
the critical dimension will then be correct at short times, but there is evidence that at long
times (during the 1/xdt density regime) the actual numerical prefactor will be larger than that
predicted by eq. (6). Indeed, for infinitely reactive particles in one dimension for z = 2, Torney
and McConnell [8] have proved that kt as determined by eq. (6) is correct at short times, but
is smaller by a factor of π/2 from its actual value at long times.

Our result for the density decay (eq. (8)) does not give evidence for a Q-dependent power
law decay at intermediate times as suggested in refs. [15-17] for z = 2. We suggest these
workers may have been observing intermediate kinetics between the 1/t and 1/td/2 regimes of
eq. (8).

We remark that the results here have been for general diffusion dynamics described by the
dynamical exponent z. They apply for both subdiffusion (z > 2) and superdiffusion (z < 2)
provided that reactants diffuse independently of one another, and that xt and mean collision
time ta are well defined. Implicitly, we have assumed that all moments of displacement are
characterized by the same scale, xt. Systems in which reactants perform Lévy walks, for which
the rms displacement does not exist [27, 28], are not covered. The results do not apply also
to systems in which reactants perform random walks for which the probability distribution
for the time between successive steps has a power law long-time tail and hence ta does not
exist [29, 30]. In order to describe systems of the latter type, eq. (1) should be modified to
include an extra integration over all possible collision times.

To specialize to the most widely studied case of small Fickian molecules one sets z = 2. For
example, at the critical dimension d = 2 we predict a short-time diffusion-controlled regime
for high reactivity (Q > Q∗) in which n0 − nt ∼ n2

0t/ ln t, and we predict that in all cases the
long-time decay is nt ∼ ln t/t.

Finally, it is worth discussing how the above results may generalize to the two-species
reaction problem, A + B → ∅, for which segregation of reactants into A-rich and B-rich
regions occurs at long times in dimensions d < 2z. This leads to an asymptotic decay
nt ≈ (n0/x

d
t )

1/2 [2, 3]. For d < z, assuming that these kinetics apply for times longer than a
timescale ts, we may estimate the magnitude of ts by assuming that eq. (8) applies for t < ts
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and demanding continuity in nt. Thus one finds ts ≈ tl for strong systems, while for weak
systems ts ≈ ta[n0a

d(Qta)2]z/(d−2z) which satisfies t∗m < ts < t∗2. This would suggest that at
least for weak systems the 1/xdt regime does not arise in A+B → ∅. Indeed, this is consistent
with the numerical simulations of ref. [2], where no 1/xdt regime was found for the case z = 2,
d = 1. These workers observed that for sufficiently short times the density remained close to
n0. For high Q values a crossover to t−1/4 occurred at tl. For small Q, they found that the
t−1/4 regime was preceded by a 1/t regime during t∗m < t < ts. (We interpret the onset time
here to be t∗m, not tl/(Qta) as interpreted by the authors of ref. [2]. The numerical values
of these two timescales happen to be very close to one another in this simulation.) We hope
future numerical simulations as well as experiments on reacting polymers where novel values
of z are realized will test the validity of the above theoretical predictions.
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[17] Mártin H. O. and Braunstein L., Z. Phys. B, 91 (1993) 521.
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